Densification of nanoporous metals during nanoindentation: The role of structural and mechanical properties

Author:

Huber N.ORCID,Ryl I.,Wu Y.,Hablitzel M.,Zandersons B.,Richert C.,Lilleodden E.

Abstract

AbstractThe analysis of the densification behavior of nanoporous metals in nanoindentation is challenging in simulations and experiments. A deeper understanding of the densification behavior provides valuable information about the different deformation mechanisms in nanoindentation and compression experiments. The developed two-scale model allows for predicting the densification field for variable microstructure and elastic–plastic behavior. It could be shown that the penetration depth of the densification field is mainly controlled by the ratio of the macroscopic work hardening rate to yield stress. The shape as well as the value at characteristic isolines of densification depend mainly on the macroscopic plastic response of the nanoporous material. This could be confirmed by nanoindentation experiments, where the densification under the indenter was measured for ligament sizes from 35 to 150 nm. Although the depth of the densification field was underpredicted by the simulations, the experiments confirmed the predicted trends. Graphical abstract

Funder

Deutsche Forschungsgemeinschaft

Helmholtz-Zentrum hereon GmbH

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3