A review on chemical bath deposition of metal chalcogenide thin films for heterojunction solar cells

Author:

Sengupta SuchetaORCID,Aggarwal Rinki,Raula Manoj

Abstract

AbstractHeterojunction (HJ) thin-film II–VI solar cells are emergent substitutes to the traditional silicon solar cells because of improved efficiency and cost-effectiveness. A renewed interest in depositing the constituent layers employing chemical bath deposition (CBD) is shown because of the absence of any stringent reaction conditions which ensures the preservation of the properties of the constituent layers. Variation in the growth conditions has strong effects on the morphologies and the properties of the resultant films specially the interface. Inappropriate or alloyed interfaces may result in pinholes formation affecting the resultant electric field because of reduced junction area and enhanced recombination for carriers which in turn affects the efficiency. In this review, we provide an overview of the different combinations of metal chalcogenide/chalcopyrite thin-film layers for HJ solar cells by CBD and achieving control over the resultant morphology, particularly focusing on interfacial epitaxial relationship which is found to have substantial influence on the efficiency of the resultant cell. Graphical abstract Heterojunction (HJ) thin-film II–VI solar cells are emergent substitutes to the traditional silicon solar cells because of improved efficiency and cost-effectiveness. A renewed interest in depositing the constituent layers employing chemical bath deposition (CBD) is shown because of its simplicity and versatility. Variation in the growth conditions like temperature and the reagent concentrations have strong effects on the morphologies and the properties of the resultant films specially the interface. In this review, we provide an overview of the different combinations of metal chalcogenide/ chalcopyrite thin-film layers for HJ solar cells by CBD and achieving control over the resultant morphology and phase composition, particularly focusing on interfacial epitaxial relationship, which is found to have substantial influence on the efficiency of the resultant cell.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3