Abstract
AbstractTwo-faced GBR membranes were fabricated by electrophoretic deposition (EPD) using a combination of biopolymers and mesoporous bioactive glass nanoparticles (MBGNs). The membrane design was aimed at leveraging the advantageous properties of both biopolymers and MBGNs. The dense composite layer consisted of chitosan (CS) incorporating MBGNs and it was functionalized with a phytotherapeutic drug, naringin (Nar). The porous layer consisted of CS-gelatin (Gel)- MBGNs as well as copper chelated chitosan (Cu(II)-CS)-Gel-MBGNs composites. EPD was conducted in direct current mode. The antibacterial activity of the membranes as a result of the presence of Cu(II) and Nar was confirmed. The films were cytocompatible when tested with MC3T3-E1 (pre-osteoblastic) and MG-63 (osteoblast like) cell lines. However, a slight cytotoxic effect of the releasing Cu(II) ions was determined. In contrast, Nar-loaded films revealed improved cell viability. The results indicate the high potential of EPD to fabricate bilayer structures for GBR applications.
Graphical abstract
Funder
Higher Education Commision, Pakistan
Friedrich-Alexander-Universität Erlangen-Nürnberg
Publisher
Springer Science and Business Media LLC