Abstract
AbstractThe design freedom in Laser Metal Deposition provided by the absence of a powder bed enables the fabrication of Functionally Graded Materials through Additive Manufacturing. For the first time, two suitable γ-TiAl alloys (TiAl48Cr2Nb2, TiAl45Nb4C) are combined in direct and gradual transitions to generate different microstructure morphologies and, consequently, different mechanical properties within a component after an identical heat treatment. The influence of alloy composition, microstructure type, and material transition on the tensile properties and fracture toughness is analyzed through miniature testing. Miniature tensile tests show no orientation dependency in regard to the build direction and the composition/microstructure transition is not found to be a preferred fracture site. The miniature fracture toughness tests reveal that already small composition changes—insufficient to alter the microstructure configuration—can have a significant effect on the cracking behavior.
Graphical abstract
Funder
Deutsche Forschungsgemeinschaft
European Regional Development Fund
Ministerstvo Průmyslu a Obchodu
Friedrich-Alexander-Universität Erlangen-Nürnberg
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献