Iron nanoparticles for plant nutrition: Synthesis, transformation, and utilization by the roots of Cucumis sativus

Author:

Gracheva MariaORCID,Klencsár Zoltán,Kis Viktória Kovács,Béres Kende Attila,May Zoltán,Halasy Viktória,Singh Amarjeet,Fodor Ferenc,Solti Ádám,Kiss László Ferenc,Tolnai Gyula,Homonnay Zoltán,Kovács KrisztinaORCID

Abstract

AbstractNanotechnology has been evolving in the past decades as an alternative to conventional fertilizers. Ferrihydrite nanoparticles that model the available Fe pool of soils are proposed to be used to recover Fe deficiency of plants. Nevertheless, ferrihydrite aqueous suspensions are known to undergo slow transformation to a mixture of goethite and hematite, which may influence its biological availability. Several nanocolloid suspensions differing in the surfactant type were prepared for plant treatment and fully characterized by transmission electron microscopy and 57Fe Mössbauer spectroscopy supported by magnetic measurements. The rate of transformation and the final mineral composition were revealed for all the applied surfactants. Nanomaterials at different stages of transformations were the subject of plant physiological experiments aiming at comparing the behavior and plant accessibility of the manufactured suspensions of nanoscale iron(III) oxide and oxide–hydroxide particles. Graphical abstract

Funder

National Research, Development and Innovation Office

Eötvös Loránd University

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3