Variations in strain affect friction and microstructure evolution in copper under a reciprocating tribological load

Author:

Becker Sarah,Schulz Katrin,Scherhaufer Dennis,Gumbsch Peter,Greiner Christian

Abstract

Abstract The microstructure of the materials constituting a metallic frictional contact strongly influences tribological performance. Being able to tailor friction and wear is challenging due to the complex microstructure evolution associated with tribological loading. Here, we investigate the effect of the strain distribution on these processes. High-purity copper plates were morphologically surface textured with two parallel rectangles—referred to as membranes—over the entire sample length by micro-milling. By keeping the width of these membranes constant and only varying their height, reciprocating tribological loading against sapphire discs resulted in different elastic and plastic strains. Finite element simulations were carried out to evaluate the strain distribution in the membranes. It was found that the maximum elastic strain increases with decreasing membrane stiffness. The coefficient of friction decreases with increasing membrane aspect ratio. By analyzing the microstructure and local crystallographic orientation, we found that both show less change with decreasing membrane stiffness. Graphic abstract

Funder

Baden-Wuerttemberg

European Research Council

German Research Foundation

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3