Author:
Schuhladen Katharina,Bednarzig Vera,Rembold Nadine,Boccaccini Aldo R.
Abstract
Abstract
3D printing offers the possibility to generate complex and individualized constructs (scaffolds) for applications in tissue engineering. This is viable by using suitable inks based on advanced biomaterials. Methylcellulose (MC), a highly biocompatible biomaterial, can be combined with manuka honey (H) to fabricate a thermo-sensitive hydrogel. Besides providing favorable biological effects, H can also be used as a natural cross-linking agent. Furthermore, the addition of bioactive glass (BG) to the ink could improve its mechanical and bioactive properties. In this study, a composite based on MC as matrix incorporating H and particulate borate BG as filler, was investigated as ink for 3D printing. Besides the improvement of the inks’ printability owing to the addition of BG, the printed scaffolds exhibited suitable swelling behavior and mechanical properties. Moreover, cell biology tests demonstrated the potential of the composite for biofabrication and applications in tissue engineering, which should be further explored.
Graphic abstract
Funder
Friedrich-Alexander-Universität Erlangen-Nürnberg
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献