Nanocrystalline Doped Cerium Oxide as a Catalyst for SO2 Reduction by Co

Author:

Tschöpe Andreas,Ying J. Y.,Liu W.,Flytzani-Stephanopoulos M.

Abstract

AbstractNanocrystalline processing by inert gas condensation has the inherent advantages of generating: (1) high surface area nanoclusters, (2) non-stoichiometric oxides, and (3) high dispersions of dopants. This approach is exploited in the synthesis of fluorite-structured catalysts for SO2 reduction by CO. Nanocrystalline CeO2-x, La-doped CeO2-x, and Cu-doped CeO2-x were produced by magnetron sputtering from a pure or mixed metal target, followed by controlled oxidation of the metallic clusters. The as-prepared doped and undoped nanocrystalline CeO2-x materials were found to be excellent catalysts for complete SO2 conversion to elemental sulfur. Undoped nanocrystalline CeO2-x enabled light-off at 460 °C, a temperature ∼120 °C lower than that over polycrystalline CeO2, which is a novel effective catalyst itself. The high catalytic activity of the nanocrystals was associated with their high concentration of oxygen vacancies. Excellent poisoning resistance was also exhibited by the nanocrystalline CeO2-x samples. These materials have stable activity in the presence of excess CO2.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3