Material Characteristics and the Performance of Electrochemical Capacitors for Electric/Hybrid Vehicle Applications

Author:

Burke A.F.,Murphy T.C.

Abstract

ABSTRACTElectrochemical capacitors (ultracapacitors) are one approach to meeting the high power requirements for the energy storage system in an electric vehicle. Energy is stored in an electrochemical capacitor by charge separation in the double layer formed in the micropores of a very high surface area electrode material, which does not undergo chemical change as in a battery. Consequently, the material requirements for capacitors are very different from those of batteries. In the last several years, a number of promising material technologies have been identified for use in electrochemical capacitors. These include activated carbon fibers, foams, and composites, doped conducting polymers, and mixed metal oxides. The most important material property is its specific capacitance (F/gm or F/cm3). Carbon materials with specific capacitances of 100 to 300 F/gm have been developed. Doped polymer materials having specific capacitances of 300 to 400 F/gm are also being studied. In addition to high specific capacitance, the electrode material must also have a low electronic resistivity ( < 0.1 Ω-cm) in order that charge can be distributed with minimum voltage drop in the electrode. Electrochemical capacitor cells have been fabricated using the various material technologies with both aqueous and organic electrolytes. Tests of the cells have shown near ideal charge/discharge characteristics — that is, the voltage versus time curves are nearly linear for constant current tests. The energy densities of 1 V cells, using aqueous electrolytes, are 1 to 1.5 W-h/kg and those of 3 V cells, using organic electrolytes are 7 to 10 W-h/kg. Most of the cells have high power densities of 1 to 3 kW/kg. Numerous new materials for electrochemical capacitors have been identified, processed, and tested in electrodes and cells in recent years and progress is rapid in this relatively new field of research.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3