Author:
Bellinger Steven L,McNeil Walter J,McGregor Douglas Scott
Abstract
AbstractMicrostructured semiconductor neutron detectors have superior efficiency performance over thin-film coated planar semiconductor detectors. The microstructured detectors have patterns deeply etched into the semiconductor substrates subsequently backfilled with neutron reactive materials. The detectors operate as pn junction diodes. Two variations of the diodes have been fabricated, which either have a rectifying pn junction selectively formed around the etched microstructures or have pn junctions conformally diffused inside the microstructures. The devices with the pn junctions formed in the perforations have lower leakage currents and better signal formation than the devices with selective pn junctions around the etched patterns. Further, pulse height spectra from conformally diffused detectors have the main features predicted by theoretical models, whereas pulse height spectra from the selectively diffused detectors generally do not show these features. The improved performance of the conformal devices is attributed to stronger and more uniform electric fields in the detector active region. Also, system noise, which is directly related to leakage current, has been dramatically reduced as a result of the conformal diffusion fabrication technique. A sinusoidal patterned device with 100 μm deep perforations backfilled with 6LiF was determined to have 11.9 ± 0.078% intrinsic detection efficiency for 0.0253 eV neutrons, as calibrated with thin-film planar semiconductor devices and a 3He proportional counter.
Publisher
Springer Science and Business Media LLC
Reference12 articles.
1. New surface morphology for low stress thin-film-coated thermal neutron detectors
2. 12. Shultis J.K. and McGregor D.S. Nucl. Instrum. and Meth. (2009) (in press).
3. 4. Bellinger S.L. McNeil W.J. Unruh T.C. McGregor D.S. IEEE Trans. Nucl. Sci. (2009) (in press).
4. Efficiencies of coated and perforated semiconductor neutron detectors
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献