Real-time Investigations on the Formation of CuIn(S,Se)2 while annealing precursors with varying sulfur content

Author:

Hölzing Astrid,Schurr Roland,Jost Stefan,Palm Jörg,Deseler Klaus,Wellmann Peter J.,Hock Rainer

Abstract

AbstractCIS based chalcopyrite absorber materials are usually substituted in the cation and anion lattice to yield mixed pentanary crystals with the general composition Cu(In,Ga)(Se,S)2 to achieve an optimised adaptation of the semiconductor bandgap to the terrestrial solar spectrum. Real-time investigations during the annealing of stacked elemental layers (SEL) of sputtered metals Cu and In and evaporated chalcogens S and Se with varying ratios were performed by angle-dispersive time-resolved XRD (X-ray diffraction) measurements. After qualitative phase analysis the measured powder diagrams were quantitatively analysed by the Rietveld method, the phases formed determined and their reaction kinetics obtained. Ternary indium and copper sulfoselenides form by the sulfoselenisation of the intermetallic alloy yielding different educts for the chalcopyrite formation with varying sulfur content. For S/(S+Se) ≥ 0.5 the formation of the chalcopyrite CuIn(S,Se)2 is similar to the crystallisation path of CuInS2. With increasing amount of selenium (S/(S+Se) = 0.25) different ternary sulfoselenides contribute to the semiconductor formation. For small amounts of sulfur, i.e. S/(S+Se) ≤ 0.1, the chalcopyrite crystallisation proceeds comparable to the one observed for sulfur-free Cu-In-Se precursors. The formation of CuIn(S,Se)2 is accelerated and proceeds mainly after the peritectic decomposition of Cu(S,Se) to Cu2(S,Se). The sulfur content determines the crystallisation temperature of the semiconductor because Cu(S,Se) decomposes at higher temperatures with increasing sulfur. Upon heating S ↔ Se exchange reactions take place in the Cu-S-Se and Cu-In-S-Se system.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3