High Reflectivity Modulation Electrochromic Windows

Author:

Gerouki A.,Goldner R.B.

Abstract

ABSTRACTIn this paper we report the fabrication of high reflectivity modulation electrochromic Windows (ECW's) which have exhibited a colored state reflectivity of more than 50% for the wavelength range of 1 to 2.5 µm with an average bleached state reflectivity of 20%. The transmissivity of these ECW's in the colored state was less than 5% and in the bleached state it averaged 60%. The materials employed were tungsten oxide (nominally WO3) for the first electrochromic electrode, lithium cobalt oxide (nominally LiCoO2) for the second, complementary, electrochromic electrode, lithium phosphorus oxynitride (Lipon) for the ionic conductor (electrolyte), and indium tin oxide (ITO) and indium oxide (In2O3) for the two transparent electronic conductors. The predicted and measured reflectivity of the ECW's were influenced by the first transparent conductor (TM) in relation to its thickness and optical properties. Devices without a TC1 exhibited the highest reflectivity modulation, It was also concluded that two of the main limitations to the degree of reflectivity modulation attainable with the ECW's were lithium insertion into TC1 and electronic transport through the electrolyte.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference9 articles.

1. 9. Goldner , “Transparent, Electrically conductive, ion-blocking layer for electrochromic windows”, U.S. Patent, 5,532,869 (Jul. 2,1996).

2. Nuclear reaction analysis profiling as direct evidence for lithium ion mass transport in thin film ‘‘rocking‐chair’’ structures

3. A Study of the Optical Band Gap of Lithium Tungsten Trioxide Thin Films

4. 6. Gerouki A. , “Electrochromic Windows with High Reflectivity Modulation”, Ph.D. Thesis, EE,Tufts University, February 1998.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3