X-Ray Lithography Induced Radiation Effects In Deep Submicron Cmos Devices

Author:

Wang L.K.,Acovic A.,Chang W.H.

Abstract

AbstractX-ray lithography introduces device radiation damage from the high energy photons during the lithography process. We have studied this effect on deep submicron n- and p-channel MOSFETs with gate dielectric thickness at 7 to 13 nm. After the x-ray irradiation the device characteristics are strongly affected by the generation of oxide charges, interface states and electron traps. These introduced damages cause the reduction of device transconductance, shift of the threshold voltages and increased leakage current. However, this degradation of device and circuit is lessened from technology scaling by thinning the gate oxide and lowering the supply voltage. The x-ray radiation damage, induces interface states and oxide charges which can be annealed out with a low temperature (400°C) forming gas (FG, 90% N2, 10% H2) annealing process. The device properties are essential unchanged after the annealing process. However, the residue damage is shown to enhance hot-carrier instability of p-channel devices if the remaining neutral traps act as electron or hole traps in the SiO2. In this paper, we investigate the radiation effects on the n- and p-channel MOSFETS fabricated with deep submicron device processes with thinner gate oxides and compare the hot carrier reliability of these devices after the synchrotron x-ray irradiation and also after the post metal forming gas annealing. The results indicate the device hot carrier instability has no effect on the devices with thin gate oxide with thickness approaching the electron tunneling range.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference8 articles.

1. [4] Wang L.K. , Journal of electronic materials, pp. 753 July 1992.

2. [2] Wang L.K. , et al, J. Vac. Sci. Technol. B, Nov/Dec 1989.

3. [1] Wang L.K. , et al, Digest 1989 Symposium on VLSI technology, pp.11, May 1985

4. [3] Seeger D. , et al, Digest IEEE Lithography Workshop, 1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3