Versatile Nanodeposition of Dielectrics and Metals by Non-contact Direct-Write Technology

Author:

Wanzenboeck H. D.,Langfischer H.,Harasek S.,Basnar B.,Hutter H.,Bertagnolli E.

Abstract

ABSTRACTDirect-write techniques allow processing in the nanometer range and have become powerful methods for rapid prototyping of microelectronic circuits and micro-electro-mechanical systems (MEMS). Chemical reactions are initiated by a focused beam leading to deposition of solid material on literally any surface. We have used this method to deposit metals such as tungsten and dielectrics such as silicon oxide using a focused ion beam (FIB) with 10 to 50 kV acceleration voltage. Controlled guidance of the beam allows deposition of both metallic and dielectric material with features in the 100 nm range. The deposition of separate structures of metallic and dielectric material deposited next to each other is shown on samples of different roughness. 3-dimensional exemplary prototypes in the sub-μm range and multilayer structures demonstrate the versatility of this method for prototyping and mix-and-match approaches with commercial semiconductor devices. A characterization of the deposited material was performed to clarify chemical composition and surface morphology of deposited structures. The deposition parameters were found to influence the chemical composition and electronic properties of the material. Direct-write deposition of dielectrics and metals by FIB allows fabrication of 3-dimensional prototypes with custom-tailored material properties.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3