Materials With Improved Properties From Polymer-Ceramic Nanocomposites

Author:

Kuchta Frank-Dieter,Lemstra Piet J.,Keller Andrew,Batenburg Lawrence F.,Fischer Hartmut R.

Abstract

ABSTRACTIn order to link the fundamental research field of polymer crystallization with the technical important field of composite materials polymer-layered silicate nanocomposites from polyethylene (PE) are prepared and their morphology and properties are investigated. The effect of an external confinement introduced by highly anisotropic silicate layers of organically modified clay minerals on crystal growth and nanocomposite properties has been studied. The prepared nanocomposites of organically modified clay minerals and PE exhibit not only a homogeneous distribution of individual silicate layers but also of tactoids. The isothermal crystallization rate of PE in the corresponding nanocomposite at 120 °C is increased in the composite material due to the action of the silicate layers. A significant effect on crystal phase has not been observed so far but from X-ray experiments, however the crystal size seems to be influenced. The thermal stability of the nanocomposites is significantly enhanced and the decomposition mechanism has been changed due to the presence of the layered silicates within the host polymer acting as a barrier for the diffusion of small molecules like oxygen. Due to the none permanent attachment of the polymer chains to the silicate surface the thermal-mechanical properties are only moderately enhanced at low temperature while the glass transition temperature remains unaffected.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanistic Studies in Friction and Wear of Bulk Materials;Annual Review of Materials Research;2014-07-01

2. Polytetrafluoroethylene matrix nanocomposites for tribological applications;Tribology of Polymeric Nanocomposites;2013

3. Electrical behavior of particle-filled polymer nanocomposites;Physical Properties and Applications of Polymer Nanocomposites;2010

4. A route to wear resistant PTFE via trace loadings of functionalized nanofillers;Wear;2009-06

5. Polytetrafluoroethylene matrix nanocomposites for tribological applications;Tribology of Polymeric Nanocomposites - Friction and Wear of Bulk Materials and Coatings;2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3