Ion Implantation Doping of InGaP, InGaAs, and InAlAs
-
Published:1991
Issue:
Volume:240
Page:
-
ISSN:0272-9172
-
Container-title:MRS Proceedings
-
language:en
-
Short-container-title:MRS Proc.
Author:
Pearton S. J.,Kuo J. M.,Hobson W. S.,Hailemarian E.,Ren F.,Katz A.,Perley A. P.
Abstract
ABSTRACTThe activation of Si+ and Be+ ions implanted into InGaP, InGaAs or InAlAs grown by GSMBE and OMVPE was investigated as a function of ion dose and annealing temperature. Activation efficiencies close to 100% were obtained in InGaP and InGaAs for Be doses up to ∼1014 cm−2 and annealing temperatures of 700–850°C. Activation of Be was less efficient in InAlAs. By contrast, implanted Si displayed a saturation in active sheet electron densities at 1–3 × 1013 cm−2 and required higher annealing temperatures for optimum activation efficiency. High sheet resistance (≤108 μ/□) regions were created by O+ implantation into n+ InGaP or InAlAs, with hopping conduction dominating carrier transport in the bombarded material. For post-implant annealing temperatures above 750°C, the conductivity was restored to its initial value. No evidence was found for the creation of electrically active oxygen-related deep levels in either material.
Publisher
Springer Science and Business Media LLC
Subject
General Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献