THz Pulse Spectroscopy of Dynamic Plasmas: A New Diagnostic Tool

Author:

Kolner Brian H.

Abstract

AbstractRapidly evolving plasmas represent a challenging environment for both study and control. Density, collision frequency and temperature fluctuations can change over orders of magnitude on time scales of one ns with spatial features less than one cm and thus are not amenable to conventional continuous-wave diagnostic techniques such as microwave or mm-wave interferometry. We have developed a new technique for studying plasmas undergoing rapid nonequilibrium changes that uses THz time-domain spectroscopy (THz-TDS) in conjunction with optical fluorescence imaging. The advantages of using THz pulses lie in the fact that the broad bandwidth of a THz pulse contains frequency components both above and below the plasma frequency allowing a single ps-duration pulse to carry away information about the complex path-integrated susceptibility. Transverse fluorescence gives us a model of the longitudinal plasma distribution and using a novel rms error-minimization technique we can recover the real and imaginary parts of the susceptibility with <5 mm spatial and, potentially, ps time resolution (we are currently limited by S/N considerations to averaging over several THz pulses and thus obtain 40 ns resolution). From this we obtain the electron density and collision frequency, spatially and temporally resolved, with dynamic range >103. The principle of this new technique will be discussed along with results on a pulsed DC-discharge plasma. We will also present some new ideas such as concurrent molecular spectroscopy and computed tomography.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3