Author:
Nishio Keishi,Okada Tomomi,Kikuchi Naoto,Mikusu Satoshi,Iida Tsutomu,Tokiwa Kazuyasu,Watanabe Tsuneo,Kineri Tohru
Abstract
AbstractDelafossite CuYO2 and Ca doped CuYO2 were prepared by thermal decomposition of a metal-citric acid complex. The starting solution consisted of Cu acetate, Y acetate and Ca acetate as the raw materials. Citric acid was used as the chelating agent, and acetic acid and distilled water were mixed as a solvent. The starting solutions were heated at 723 K for 5 h after drying at 353 K. The obtained powders were amorphous and single phase of orthorhombic Cu2Y2O5 was obtained by heat-treated the amorphous powder at a temperature range between 1073 and 1373 K for 3 h in air. Furthermore, Heat-treating the obtained orthorhombic Cu2Y2O5 at above 1373 K in air caused it to decompose into Y2O3, CuO and Cu2O. On the other hand, the sample powder prepared from a starting solution without citric acid, i.e., single phase of orthorhombic Cu2Y2O5 could not be obtained under the same synthesis conditions as that for a solution with citric acid. We were able to obtain delafossite CuYO2 and Ca doped CuYO2 from orthorhombic Cu2Y2O5 under a low O2 pressure atmosphere at above 1223 K. The obtained delafossite CuYO2 composed hexagonal and rhombohedral phases. The color of the CuYO2 powder was light brown and that of Ca-doped CuYO2 was light green. Diffraction peaks in the XRD pattern were slightly shifted by doping Ca for CuYO2, and these peaks shifted toward to a high diffraction angle with an increasing amount of doped Ca. From these results, we concluded that Ca doped delafossite CuYO2 could be obtained by thermal decomposition of a metal-citric acid complex.
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. 13Keishi Nishio, Kazuma Takahashi, Yusuke Inaba, Mariko Sakamoto, Tsutomu Iida, Kazuyasu Tokiwa, Yasuo Kogo, Atsuo Yasumori, Tsuneo Watanabe, 23rd International Conference on Thermoelectrics-ITC2004 Proceedings, Released 2005
2. 16JCPDS No.39-244
3. Nanostructured Yttria Powders Via Gel Combustion
4. Production of strontium-substituted lanthanum manganite perovskite powder by the amorphous citrate process
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献