Crystal Growth Mechanisms and Kinetics

Author:

Glicksman M. E.,Selleck M. E.

Abstract

AbstractThe scientific contributions by David Turnbull and his co-workers toward understanding crystal growth span over 35 years from the late 1940's to the present. Turnbull's early attempt (1950) to correlate interfacial energies derived from droplet supercooling measurements with other thermochemical data still provides a significant data base for estimating such energies in a variety of materials. His work with Hillig in 1956 on quantification of the screw dislocation mechanism for interfacial molecular attachment remains as a predictive theory for defect-assisted growth of faceted, and therefore kinetically hindered, interfaces. The Hillig-Turnbull screw dislocation mechanism is now ranked among such notable kinetic models for crystal growth as the Wilson-Frenkel random attachment theory and the nucleationlimited layer spreading models of Burton, Cabrera, and Frank. Turnbull's contributions and interest in elucidating crystal growth kinetics have continued throughout his long and productive career, as evidenced by his recent work with Coriell (1982) on estimates of collision limited rapid crystal growth in highly supercooled transition metals. Progress in unraveling the kinetic contributions of interfacial attachment from those of heat and solute transport will also be reviewed to provide a current context of Professor Turnbuli's contributions to the field of rapid crystallization.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Capillary Mediated Melting of Ellipsoidal Needle Crystals;Free Boundary Problems;2006

2. Conduction-limited crystallite melting;Journal of Crystal Growth;2005-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3