Author:
Ingle N.K.,Theodoropoulos C.,Mountziaris T.J.,Wexler R.M.,Smith F.T.J.
Abstract
AbstractThe growth of undoped GaAs films from Ga(C2H5)3 (TEG) and AsH3 by Metalorganic Chemical Vapor Deposition (MOCVD) has been studied in a low-pressure reactor operating at 3 Torr. This precursor combination is known to produce GaAs films with very low carbon incorporation when compared to films grown from Ga(CH3)3 (TMG) and AsH3. A kinetic model of the growth process has been developed that includes both gas-phase and surface reactions based on reported decomposition mechanisms of TEG and AsH3. The kinetic model was coupled to a transport model describing flow, heat and mass transfer. Finite element simulations were performed to determine the rate constants of the growth reactions that provide the best fit between predicted and observed growth rates. Under typical operating conditions the surface reactions were found to dominate the growth process and a reduced surface kinetic model was identified by sensitivity analysis. The proposed reaction-transport models can successfully predict observed growth rates of GaAs films and they can be used for identifying optimal operating conditions in MOCVD reactors.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献