Abstract
AbstractOrdered nanoscale pore systems such as those represented by zeolites offer many opportunities for the design of complex functional systems via self-assembly.With their large internal surface areas and tunable, well-defined crystalline pore structures that allow molecular sieving and ion exchange, zeolites can be adapted for numerous applications. The nanoscale reactors present in zeolite pore systems have been explored as structural templates for the spatial organization of numerous guests. Examples from various fields are discussed, such as the stabilization of organic dyes for the construction of energy transfer and storage systems, the construction of host–guest hybrid catalyst systems, and the encapsulation of conducting or semiconducting nanoscale wires and clusters. More complex, hierarchical forms of nanostructured matter become accessible when zeolite crystals are used as building blocks for the selfassembly of thin films or three-dimensional objects. A combination of weaker and stronger interactions ranging from dispersive forces, hydrogen bonding, and electrostatic interactions to covalent bonding can be used to build functional hierarchical constructs. Several examples and novel applications of such systems will be discussed, including oriented channel systems, chemical sensors, and hierarchical pore systems for catalytic reactions.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献