The influence of hydrogen on ion beam mixing of multilayer films

Author:

B⊘rgesen P.,Wistrom R. E.,Johnson H. H.,Lilienfeld D. A.

Abstract

Previous qualitative studies of ion beam mixing of Ni–Ti and Fe–Ti multilayers at room temperature have shown the Ni–Ti samples to mix considerably faster than the Fe–Ti, in apparent contrast with theory. Furthermore, the Fe–Ti mixing was strongly inhibited by previous charging of the sample with hydrogen, whereas only a small effect was seen for Ni–Ti. We have quantified the mixing and extended the study to four more systems (Al–Ti. Co–Ti, Cu–Ti, and Pd–Ti) and lower temperatures. This allows some important conclusions to be drawn. Predictions based on a thermal spike model underestimate the larger room temperature mixing rates (Cu–Ti, Ni–Ti, and Pd–Ti), apparently because of contributions from a temperature dependent mechanism such as radiation enhanced diffusion. The lower mixing rates (Fe–Ti, Co–Ti, and Ni–Ti at ∼80 K) are overestimated by a factor of 2–3.5, possibly because of hydrogen contamination of the as-deposited samples. For the Al–Ti sample, the experimental mixing rate was in good agreement with predictions. Except for the Cu–Ti sample, results were seen to vary with heat of solution, rather than heat of mixing, suggesting significant contributions from the lower temperature after-spike regime. Hydrogen charging was found to reduce the Fe–Ti mixing rate by a factor of 7 at room temperature, whereas the Co–Ti and Ni–Ti rates were only reduced by a factor of 2, and the mixing of the Pd–Ti was influenced very little. Near liquid nitrogen temperature the Ni–Ti mixing rate was more strongly reduced (by a factor of 3–4). Our results suggest that the original hydrogen contamination in as-deposited samples may also cause significant reduction of mixing rates in some materials.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3