Author:
Harding D. S.,Oliver W. C.,Pharr G. M.
Abstract
AbstractResults of an investigation aimed at developing a technique by which the fracture toughness of a thin film or small volume can be determined in nanoindentation experiments are reported. The method is based on the radial cracking which occurs when brittle materials are deformed by a sharp indenter such as a Vickers or Berkovich diamond. In microindentation experiments, the lengths of radial cracks have been found to correlate reasonably well with fracture toughness, and a simple semi-empirical method has been developed to compute the toughness from the crack lengths. However, a problem is encountered in extending this method into the nanoindentation regime with the standard Berkovich indenter in that there are well defined loads, called cracking thresholds, below which indentation cracking does not occur in most brittle materials. We have recently found that the problems imposed by the cracking threshold can be largely overcome by using an indenter with the geometry of the corner of a cube. For the cube-corner indenter, cracking thresholds in most brittle materials are as small as 1 mN (∼ 0.1 grams). In addition, the simple, well-developed relationship between toughness and crack length used for the Vickers indenter in the microindentation regime can be used for the cube-corner indenter in the nanoindentation regime provided a different empirical constant is used.
Publisher
Springer Science and Business Media LLC
Cited by
199 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献