The Surface Chemistry of Triallylamine on Si(111) and its Coadsorption with Triethylgallium

Author:

Freundt Dirk,Landmesser Georg,Rizzi Angela,Lüth Hans

Abstract

ABSTRACTThe surface chemistry of Triallylamine (TAA), (C3H5)3N on Si(111) has been studied by adsorption under UHV conditions and in-situ characterization. High Resolution Electron Energy Loss Spectroscopy (HREELS) yields the spectrum of vibration modes at the surface, and X-ray Photoelectron Spectroscopy (XPS) yields the chemical bonding and the partial concentration of the different adsorbates in the near surface region. The tertiary amine TAA physisorbs at RT without dissociation. Successive annealing steps of the physisorbed phase induce the dissociation of the amine at 400 °C. At higher temperatures the allyl groups are partially desorbed and the rest fully dissociated at 600 °C, where the hydrogen leaves the surface and the nitrogen and carbon start to diffuse into the Si substrate. A very similar behaviour is observed for the adsorption of TAA on a heated Si substrate. The coadsorption with Triethylgallium (TEG) in the temperature range 500–800 °C does not induce significant changes in the reaction at the Si surface. A negligible quantity of Ga is detected at the surface after codeposition in the whole investigated temperature range. The growth of a GaN phase has not been observed, neither on Si(111) nor on Al2O3(0001) substrates.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3