Epitaxial Growth of GaN on Lattice-Matched Hafnium Substrates

Author:

Beresford R.,Stevens K.S.,Briant C.,Bai R.,Paine D.C.

Abstract

ABSTRACTA method of producing epitaxial GaN on single-crystal Hf has been developed. The metal substrate is formed by a strain-anneal process yielding macroscopic (5-mm) grain sizes, followed by polishing, chemical etching, and Ar ion sputtering at elevated temperature in ultrahigh vacuum. The growth is conducted by plasma-assisted molecular beam epitaxy using an initial passivation layer deposited at low temperature and subsequent growth at 700 °C. The resulting films are in registry with the hep substrate lattice as observed by reflection high-energy electron diffraction during growth and verified by plan-view transmission electron microscopy. High-resolution x-ray rocking curve linewidths of the GaN and Hf [1012] peaks are as narrow as 900 and 180 arc seconds, respectively. The [0002] peak separation confirms the approximately 2.7% mismatch in the c axis spacing. Initial photo]uminescence observations at 20 K of a (donor-bound exciton) peak at 3.467 eV are consistent with the assumption of a nearly strain-free film resulting from the exact basal-plane lattice match and close thermal coefficient match between GaN and Hf.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Freestanding GaN‐substrates and devices;physica status solidi (c);2003-08-27

2. Substrates for gallium nitride epitaxy;Materials Science and Engineering: R: Reports;2002-04

3. Investigation of the annealing texture evolution in hafnium;Metallurgical and Materials Transactions A;1998-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3