The Immobilization of Cesium and Strontium in Ceramic Materials Derived from Tungstate Sorbents

Author:

Luca Vittorio,Drabarek Elizabeth,Griffith Christopher S.,Chronis Harriet,Foy James

Abstract

ABSTRACTThe effective immobilization of Cs+ and/or Sr2+ sorbed on hexagonal tungsten oxide bronze (HTB) adsorbent materials can be achieved by heating in air at temperatures in the range 500 – 1000 °C. Crystalline powdered HTB materials formed by heating at 800 °C show leach characteristics comparable to Cs-containing hot-pressed hollandites in the pH range from 0 to 12. If the Cs-loaded HTB sorbents are pressed into pellets prior to calcination, ceramic monoliths can be prepared. Heating to temperatures in excess of 1250 °C results in the melting of the sorbent to form millimetre-sized crystals of bronzoid phases. Thermal analysis shows that melting of the cation-exchanged tungstate sorbents is initiated at temperatures as low as 850 °C and concludes by 1300 °C. The absence of any significant mass loss immediately after melting, as well as chemical analyses before and after melting, confirm that Cs is not volatilized to any significant extent at the temperatures required to generate durable, coarsely crystalline products. The melted bronzoid product is a multiphase ceramic in which Cs+ remains bound within, and appears to stabilize, the hexagonal bronze phase, even after complete melting at 1300 °C, while elements such as Sr2+ are present within other tungstate phases. The bronzoid chemical system appears capable of accommodating a wide range of other elements. Here we have demonstrated that modification of the sorbent properties by incorporation Mo does not impact severely on the durability of materials prepared below 1000 °C, even when exposed to strong acid (pH=1) and elevated temperature (150 °C). As an example, one-day MCC1 leach rates lower than 1×10−5g/m2/day were measured using demineralized water at 90 °C for Cs-saturated Mo-doped sorbents that had been heated in air at 900 °C, while the fraction of Cs leached from powdered samples in 0.1 M HNO3 solutions at 150 °C for 4 days is only 4×10−3 g/m2/day.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference8 articles.

1. Hydrothermal synthesis of sodium tungstates

2. 2. Dosch R.G. , SAND-75–5601, 1975.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3