Deep Ultraviolet Light Emitting Diodes with Emission below 300 nm

Author:

Khan M. Asif

Abstract

AbstractIn this paper we will describe the problems in growth and fabrication of deep UV LED devices and the approaches that we have used to grow AlGaN-based multiple quantum well deep UV LED structures and to overcome issues of doping efficiency, cracking, and slow growth rates both for the n- and the p-type layers of the device structures. Several innovations in structure growth, device structure design and fabrication and packaging have led to the fabrication of devices with emission from 250-300 nm and cw-milliwatt powers at pump currents of only 20 mA (Vf ≤ 6 V). Record wall plug efficiencies above 1.5 % are now achievable for devices with emission at 280 nm. Thermal management and a proper device design are not only key factors in achieving these record performance numbers but are also crucial to device reliability. We will also discuss some of our initial research to clarify the factors influencing the lifetime of the deep UV LEDs. In addition to our own work, we will review the results from the excellent research carried out at several other laboratories worldwide.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3