Multi-Scale Modeling of Human Cortical Bone: Aging and Failure Studies

Author:

Budyn Elisa,Hoc Thierry

Abstract

ABSTRACTA multi-scale analysis for unit cells of human cortical bone is presented. Two studies are conducted: the first study concerns the effect of aging over the structural and mechanical properties of human cortical bone; the second study is devoted to the failure mechanism and the development of cracks in cortical bone under various loading conditions. Experiments are conducted on human specimen of different ages in order to measure relevant geometrical and mechanical parameters and obtain microscopic data that will be injected into finite element models. First a continuum FEM model will compute macroscopic information that will be validated through comparison with the experimental measurements. For the failure mechanism study, an XFEM model will be developed in order to allow the growth of multiple cracks until complete failure of the cell. An elastic-damage criterion will be used in order to place the initial cracks in maximum strain locations. To follow the global response of the cell, the stress intensity factors are computed at each crack tip and a load parameter is adjusted so that the stress intensity factors remain at the critical value. In the case of competitive crack tips, a stability analysis is performed by computing the second derivative of the potential energy for each crack. Fatigue loading will be also investigated. The discretization utilizes the eXtended Finite Element Method and requires no remeshing as the cracks grow. The crack geometries are arbitrary with respect to the mesh, and are described by a vector level set. Special boundary conditions and the algorithm for detecting crack bridging and crack entering Haversian canals which allows the cracks to grow until maximum failure and/or percolation is presented.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference15 articles.

1. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue

2. Cortical bone tissue resists fatigue fracture by deceleration and arrest of microcrack growth

3. Analysis of viscoelastic behaviour of bones on the basis of microstructure;Guo;Bioengineering Conference – ASME,1995

4. 6. ABAQUS, User's Manual, Hibbit, Version 6.3, Karlsson & Sorensen, Providence, (2004).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3