Fracture Toughness of Amorphous Metals and Composites

Author:

Lewandowski J.J.,Thurston A.K.,Lowhaphandu P.

Abstract

ABSTRACTThe effects of changes in notch radius on the toughness of two different Zr-based bulk metallic glasses have been determined. It is shown that increases in notch radius produce large increases to the toughness, accompanied by extensive shear banding and crack bifurcation. The fracture toughness of twenty (20) fatigue precracked specimens exhibiting planar crack growth were in the range 20.3 ± 6.7 MPa√m for the two Zr-based glasses. Increasing the notch radius to 110 μm produced notch toughness in the range 95.3 ± 8.3 MPa√m for nine (9) tests on Vitreloy I, well in excess of that typically observed in most structural materials. Toughness tests conducted on two fatigue precracked specimens of Vitreloy I at 77 K produced values for fracture toughness that were in the range 17.9 ± 2.7 MPa√m, similar to that obtained at 298 K. The fatigue precracked fracture toughness of metallic glass composites containing large crystalline regions of a body centered cubic Zr-Ti-Nb alloy were in the range 29–42 MPa√m, but the values were temperature dependent over the range 148 K to 500 K. Fracture surfaces were analyzed via Scanning Electron Microscopy (SEM).

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metallic glass matrix composites;Materials Science and Engineering: R: Reports;2016-02

2. Nb-Ti-Zr Ternary Phase Diagram Evaluation;MSI Eureka;2015-07-08

3. Metal and Metal Oxide Transformation and Texturing Using Pulsed Fiber Laser;Materials Today: Proceedings;2015

4. Amorphous metal foams;Scripta Materialia;2006-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3