Can Spent Nuclear Fuel Decay Heat Prevent Radionuclide Release?

Author:

Jerden James L.,Goldberg Margaret M.,Cunnane James C.,Bauer Theodore H.,Wigeland Roald A.,Nietert Russell E.

Abstract

AbstractHeat generated by radioactive decay of spent fuel represents a potentially important barrier to water accumulation on commercial spent nuclear fuel in breached waste packages. In the absence of water, fuel degradation and radionuclide release will be negligible. Thermal models for the proposed Yucca Mountain Repository suggest that, after a period of approximately 1000-4000 years (depending on loadingand ventilation conditions), the repository drift walls may decline to sub-boiling temperatures, thus allowing humidity in the drift to increase. The question thus arises, is the thermal gradient between the fuel and the drift sufficient to prevent water accumulation in a humid drift environment throughout the regulatory period? The answer depends on the balance between processes that oppose water condensation ontothe fuel (decay heat) and those that promote condensation such as the deliquescence of hygroscopic phaseswithin the fuel.Our experimental results indicate that deliquescence could lead to the condensation of water onto spent fuel despite the thermal “self-drying”effect if the following criteria are met: (1) the fission product salt CsI is present in the fuel or in the fuel-cladding gap, (2) the relative humidity in the driftexceeds 80% while temperatures in the waste package are around 90oC. Previous work suggests that these criteria may be met for some fuel pins within the proposed Yucca Mountain Repository. However,experiments that account for the role of U(VI) alteration phases suggest that deliquescence may be a self-limiting process in the sense that deliquescent components (e.g. Cs, Ba, Sr) may be incorporatedinto nondeliquescent U(VI) phases that form from the corrosion of spent fuel.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3