Inaccuracies in Sneddon's Solution for Elastic Indentation by a Rigid Cone and their Implications for Nanoindentation Data Analysis

Author:

Bolshakov A.,Pharr G. M.

Abstract

AbstractMethods currently used for analyzing nanoindentation load-displacement data to determine a material's hardness and elastic modulus are based on Sneddon's solution for the indentation of an elastic half-space by a rigid axisymmetric indenter. Although this solution is widely used, no attempts have been made to determine how well it works for conditions of finite deformation, as is the case in most nanoindentation experiments with sharp indenters. Analytical and finite element results are presented which show that corrections to Sneddon's solution are needed if it is to be accurately applied to the case of deformation by a rigid cone. Failure to make the corrections results in an underestimation of the load and contact stiffness and an overestimation of the elastic modulus, with the magnitude of the errors depending on the angle of the indenter and Poisson's ratio of the half-space. For a rigid conical indenter with a half-included tip angle of 70.3°, i.e., the angle giving the same area-to-depth ratio as the Berkovich indenter used commonly in nanoindentation experiments, the underestimation of the load and contact stiffness and overestimation of the elastic modulus may be as large as 13%. It is shown that a simple first order correction can be achieved by redefining the effective angle of the indenter in terms of the elastic constants. Implications for the interpretation of nanoindentation data are discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3