The ternary system: Aluminum–iron–praseodymium

Author:

Klesnar H.,Rogl P.

Abstract

Phase equilibria in the ternary system Pr–Fe–Al have been established in an isothermal section at 800 °C from room temperature x-ray powder diffraction analysis of about 50 alloys, which were melted, annealed at 800 °C, and quenched. Phase equilibria are characterized by the formation of rather extended homogeneous regions, i.e., by a random substitution of Fe/Al in Pr(Al1−xFex)2, 0 ≤ x ≤ 0.15, in Pr2(Fe1−xAlx)17, 0 ≤ x ≤ 0.65, as well as by the formation of at least four ternary compounds. Whereas the existence of PrFe4Al8 with the CeMn4Al8-type structure has been confirmed, there were no indications for a compound “PrFe6Al6” earlier claimed to crystallize with the ThMn12-type structure. Pr6(Fe1−xAlx)14, 0.16 ≤ x ≤ 0.36 with a homogeneous region parallel to the Fe–Al binary, was found to be isotypic with the La6Co11Ga3-type of structure. Pr-rich alloys are liquid at 800 °C, and all the alloys Pr2(Fe1−xAlx)17 with aluminum concentrations less than 5 at.% Al (x ∼ 0.07) enter a two-phase equilibrium with the Pr-rich liquid. At temperatures below 800 °C, alloys with compositions close to 30 at.% Pr and 5 at.% Al show a further ternary phase on solidification, whose crystal structure is related to the La6Co11Ga3-type. PrFe2Al8 is a new representative of the CeFe2Al8-type structure. The crystal structure of the ternary compound richest in Al, PrFe2Al10, has not been solved yet.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3