Author:
Linderoth S.,Pryds N.,Eldrup M.,Pedersen A.S.,Ohnuma M.,Zhou T.-J.,Gerward L.,Jiang J.Z.,Lathe C.
Abstract
AbstractBulk Mg-Cu-Y-Al alloys, prepared by casting into a wedge-shaped copper mold, have been studied in the as-prepared, the supercooled liquid, and the crystalline states. In the as-prepared state x-ray diffraction of sub-millimeter sized regions were performed using a focused x-ray beam. The phase composition of the cross section as well as of the surface of the wedge-shaped specimen was investigated as a function of position. The cooling history of the alloy was experimentally determined and compared to results of a control-volume finite-difference modelling study. The experimentally determined and the calculated cooling rates were correlated with the observed amorphous/crystalline structure. The transition from an amorphous to a crystalline state was followed by x-ray diffraction studies as a function of time at specific temperatures in the region between the glass transition and the crystallization temperature. Based on these results a temperature-time-phase diagram was constructed. The dependence of external pressure on the crystallisation temperature was investigated by in situ high-temperature and high- pressure x-ray powder diffraction by using synchrotron radiation. The investigations form the basis for a selection of the optimum temperature in the supercooled liquid region for performing deformation/shaping of the Mg-based alloys.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献