Diffusion in Metallic Glasses and Supercooled Melts

Author:

Faupel F.,Rätzke K.,Ehmler H.,Klugkist P.,Zöllmer V.,Nagel C.,Rehmet A.,Heesemann A.

Abstract

AbstractDiffusion in metallic glasses and in the supercooled liquid state is of considerable interest not only from the technological point of view but also in terms of fundamental science, particularly in connection with the glass transition. Within the framework of the mode coupling theory the glass transition is a kinetic phenomenon characterized by the arrest of viscous flow at a critical temperatureTcwell above the calorimetric glass transition temperatureTg. BelowTcthe theory predicts cooperative hopping processes. We present results from isotope effect measurements which indeed confirm the highly collective nature of diffusion in metallic glasses and suggest cooperative hopping processes to be closely related to the universal low-frequency excitations as observed in recent molecular dynamic simulations. In accord with the mode coupling scenario these cooperative hopping processes are also observed in the supercooled liquid state of the new bulk metallic glasses well aboveTg. The reported kink in the Arrhenius plot for diffusion of various elements is shown to be related to structural changes aboveTg, e.g., an increase in free volume as probed by positron annihilation, but not to a change in the diffusion mechanism. Measurements of the activation volume of diffusion indicate that, depending on the structure of the glass, cooperative hopping may take place without assistance of thermally generated defects or via delocalized thermal defects. Moreover, we provide evidence of the existence of an opposite Kirkendall effect in interdiffusion between certain amorphous alloys that combine slow diffusion via thermal defects and fast direct diffusion.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3