Comparison of Line Stress Predictions with Measured Electromigration Failure Times

Author:

Morusupalli Rao R.,Nix William D.,Patel Jamshed R.,Budiman Arief S.

Abstract

AbstractReliability of today's interconnect lines in microelectronic devices is critical to product lifetime. The metal interconnects are carriers of large current densities and mechanical stresses, which can cause void formation or metal extrusion into the passivation leading to failure. The modeling and simulation of stress evolution caused by electromigration in interconnect lines and vias can provide a means for predicting the time to failure of the device. A tool was developed using MathCAD for simulation of electromigration-induced stress in VLSI interconnect structures using a model of electromigration induced stress. This model solves the equations governing atomic diffusion and stress evolution in one dimension. A numerical solution scheme has been implemented to calculate the atomic fluxes and the evolution of mechanical stress in interconnects. The effects of line geometries and overhangs, material properties and electromigration stress conditions have been included in the simulation. The tool has been used to simulate electromigration-induced stress in pure Cu interconnects and a comparison of line stress predictions with measured electromigration failure times is studied. Two basic limiting cases were studied to place some bounds on the results. For a lower bound estimate of the stress it was assumed that the interface can be treated like a grain boundary in Cu. For an upper bound estimate it was assumed that the interface can be treated like a free surface of Cu. Existing data from experimental samples with known structure geometries and electromigration failure times were used to compare the electromigration failure times with predicted stress build-up in the interconnect lines.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3