Construction of Strained SrTiO3/BaTiO3 Superlattices and Their Dielectric Properties

Author:

Tabata Hitoshi,Tanaka Hidekazu,Kawai Tomoji

Abstract

ABSTRACTArtificial dielectric superlattices of SrTiO3/BaTiO3(STO/BTO) and CaTiO3/BaTiO3 (CTO/BTO) have been formed by a pulsed laser ablation technique with an in situ monitoring of RHEED (reflection high energy electron diffraction) oscillation. The crystal structures can be controlled with atomic order accuracy and a large stress of 400–500 MPa is introduced at the interface between the BTO and STO layers. Xhe superlattices show higher dielectric constant than that of (Sr0.5Ba0.5)TiO3 films against the change of temperature or applied frequency. A large dielectric constant of 900 was observed for the superlattices with a stacking periodicity of 2 unit cells / 2 unit cells. Xhe superlattices show drastically different electrical behavior from that of the solid solution (Sr,Ba)XiO3 films, both with changing temperature and applied frequency. Broad maxima of the dielectric constants occur around 40–50 °C and the values remain large even for the temperature above 200 °C. On the contrary, in the case of CTO/BTO superlattices, lattice constants and dielectric constant do not change so much compared with STO/BTO cases. Lattice mismatch in the STO/BTO and the CTO/BTO superlattices are 2.5% and 5.5%, respectively. In the case of CTO/BTO, misfit dislocations such as stacking faults may occur at the interface between CTO and BTO layers owing to large lattice mismatch. Therefore, lattice strain is introduced effectively below the lattice mismatch of about 3%.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3