Author:
Habasaki J.,Okada I.,Hiwatari Y.
Abstract
ABSTRACTA molecular dynamics simulation (MD) of lithium metasilicate (Li2SiO3) and related mixed alkali system (LiKSiO3) has been performed. Changes in the mean squared displacement and the corresponding clear two-step (β and α1) relaxations in a density correlation function have been observed at 700 K (self-part) for each ion in Li2SiO3 following an exponential decay by vibrational motion in a simulation up to 300 ps (run I). The mean squared displacement of the atoms shows the change in the slope at ca. 300 ps when the simulation is extended up to 1 ns (run II). Here we call the slowest relaxation (ca. 300 ps∼) the α2 region.Oscillation, which is clearer for O and Si than for Li, is found in the second (β-relaxation) region of the function, which is attributed to the so called “boson peak”. Both the β-relaxation and the boson peak are found to be due to the correlated motion.The slower relaxation (α1-relaxation) can be fitted to a stretched exponential form and the origin of this type of decay is confirmed to be waiting time distribution of jump motions. The back-correlated jumps also decrease the decay rate.Components A and B in α1 and α2 regions for Li ion are analyzed, where the Li ion of component A is located within the first neighboring sites and that of component B moves longer than the nearest neighbor distances by cooperative jump motion. The component B shows accelerated dynamics larger than t-linear ones (∼ t1.77) in the region 50–300 ps, and the dynamics can be characterized as Lévy flight.We have found that the contribution of the cooperative jumps decreases in the mixed alkali glass. This explains the maximum of the Haven ratio accompanied with the mixed alkali effect.
Publisher
Springer Science and Business Media LLC
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献