Relaxation Processes and the Mixed Alkali Effect in Alkali Metasilicate Glasses

Author:

Habasaki J.,Okada I.,Hiwatari Y.

Abstract

ABSTRACTA molecular dynamics simulation (MD) of lithium metasilicate (Li2SiO3) and related mixed alkali system (LiKSiO3) has been performed. Changes in the mean squared displacement and the corresponding clear two-step (β and α1) relaxations in a density correlation function have been observed at 700 K (self-part) for each ion in Li2SiO3 following an exponential decay by vibrational motion in a simulation up to 300 ps (run I). The mean squared displacement of the atoms shows the change in the slope at ca. 300 ps when the simulation is extended up to 1 ns (run II). Here we call the slowest relaxation (ca. 300 ps∼) the α2 region.Oscillation, which is clearer for O and Si than for Li, is found in the second (β-relaxation) region of the function, which is attributed to the so called “boson peak”. Both the β-relaxation and the boson peak are found to be due to the correlated motion.The slower relaxation (α1-relaxation) can be fitted to a stretched exponential form and the origin of this type of decay is confirmed to be waiting time distribution of jump motions. The back-correlated jumps also decrease the decay rate.Components A and B in α1 and α2 regions for Li ion are analyzed, where the Li ion of component A is located within the first neighboring sites and that of component B moves longer than the nearest neighbor distances by cooperative jump motion. The component B shows accelerated dynamics larger than t-linear ones (∼ t1.77) in the region 50–300 ps, and the dynamics can be characterized as Lévy flight.We have found that the contribution of the cooperative jumps decreases in the mixed alkali glass. This explains the maximum of the Haven ratio accompanied with the mixed alkali effect.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3