Response of Carbon-Carbon Composites to Challenging Environments

Author:

Maahs Howard G.,Ohlhorst Craig W.,Barrett David M.,Ransone Philip O.,Sawyer J. Wayne

Abstract

ABSTRACTCarbon-carbon composites are an emerging class of composite materials having a unique combination of high-temperature properties and low densities. These properties are attractive for hot structure and thermal protection system applications in future aerospace vehicles. Aerospace service environments of particular interest are cyclic temperature, oxidizing environments to 3000°F. For carbon-carbon composites to serve as practical engineering materials in such challenging environments, their long-term mechanical and chemical stability is essential.Many aspects of proposed service environments for these composites pose significant challenges to their satisfactory performance. Among these aspects are the oxidizing nature of the environments (including both high and low oxygen partial pressures), high temperatures, moisture, cyclic temperature service, and foreign-object impact. This paper presents results from materials performance evaluations which cover each of these parameters. The focus is on oxidation-resistant carbon-carbon composites intended specifically for multi-use aerospace applications. Results are presented for the carbon-carbon material currently in use on Space Shuttle and for newer, more advanced structural forms of these composites.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference32 articles.

1. 29. Ransone P. O. , Maahs H. G. , Ohlhorst C. W. , and Sawyer J. W. , presented at the 5th Annual Conference of the Materials Technology Center “Composite Technology,” Southern Illinois University at Carbondale, Carbondale, Illinois, 1988 (unpublished).

2. 24. Tajima Y. A. , in NASA Conference Publication 2501, edited by Maahs H. G. (1988), in press.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3