Author:
Doerner Mary F.,White Richard L.
Abstract
The continued exponential growth in areal density for longitudinal magnetic-recording devices places ever more stringent demands on disk performance. The design of materials and processes must provide the required advances in technology. The magnetic properties are controlled through the choice of underlayers, magnetic alloys, and the deposition processes that control crystallographic orientation and magnetic isolation between grains. The requirement of lower head-disk spacing places increasing stress on the tribological performance of the disks, controlled by a very thin overcoat and lubricant layer. This article reviews the various materials issues relevant to magnetic-disk technology.The major obstacle for achieving high areal density in thin-film media is transition noise. This noise arises from the zig-zag transition boundaries that occur due to cooperative switching of the magnetic grains. Both exchange coupling between grains and magnetostatic interactions cause magnetic-cluster sizes larger than the grain size. The goal is to magnetically isolate the grains and keep the grain size small. As the dimensions of the bit cell shrink, smaller grain size is required to obtain enough grains per bit cell to maintain the required signal-to-noise ratio (SNR). In the 10–40-Gbits/in.2 areal-density range, the issue of thermal stability of small (<10 nm), isolated grains needs to be addressed.In addition to good SNR, a narrow transition width is needed in order to pack the transitions closer together. The objective is to minimize interactions between transitions to reduce nonlinear amplitude loss and superlinear noise.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献