Polymer Surface Dynamics

Author:

Granick Steve

Abstract

A major surge of activity is underway to understand the dynamics of polymer chains at interfaces. This stands in contrast to the situation a generation ago when much of polymer-materials research revolved around understanding dynamics in the bulk (isotropic) state. Building in part on earlier studies that had been somewhat neglected, striking new findings have been obtained. The new methods and equipment include surface-specific spectroscopies; advanced, in situ time-resolved methods to determine surface structure and composition; and the surface-forces apparatus for measuring adhesion and interfacial rheology. Also, older methods (such as contact angle) have been revitalizated and applied to new problems. Theoretical calculations and molecular-dynamics simulations are also emerging.Appreciation is growing that scientific understanding is possible of these systems that are so complex and, often, so far from equilibrium. Polymer surfaces are becoming recognized as an area with many opportunities to do exciting and useful surface science, particularly regarding kinetics, diffusion, surface chemistry, and other rate-dependent processes.The engineering significance is that while polymers and plastics-based applications are rooted in our economic life, too often the technologies and formulations are empirically derived. One tends to take plastics and their communication with adjoining materials for granted. A molecular understanding is needed so that better design can emerge by rational extension.During the course of these new activities, the community of polymer science has rubbed shoulders with and has thereby become increasingly integrated with other disciplines-colloid science, surface science, biomedical science, and microelectronics, to cite a few examples. When dealing with interfaces, one's parochial materials interests quickly become generalized.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3