The Quartz-Crystal-Microbalance Study of Protein Binding on Lipid Monolayers at the Air-Water Interface

Author:

Okahata Y.,Ebara Y.,Sato T.

Abstract

Interactions of proteins with cell membranes are of great interest in studies such as molecular recognition at cell surfaces. A monolayer lipid film at the airwater interface is useful in cell-surface modeling. Studies in binding behavior of proteins from a solution with a lipid monolayer have been reported by using various in situ techniques: surface-tension measurements, fluorescent-labeling techniques, radio-labeling techniques, fluorescence reflection methods, surface plasmon resonance, and surface-force measurements. These methods have potential applications in the observation of protein bindings. However, they require large, expensive equipment for in situ measurements and present difficulties for quantitatively obtaining the amount of protein adsorbed and the time frame for both binding and dissociation processes.In this article, we discuss a new, easy in situ technique to detect interactions of adsorbed proteins with a phospholipids monolayer through the use of a Langmuir film balance on which a quartz-crystal microbalance (QCM) is horizontally attached to the lipid monolayer from the air phase (see Figure 1). QCMs are known to be very sensitive mass-measuring devices because their resonance frequency decreases with an increase of a given mass on a QCM at the nanogram level. Adsorption and penetration behavior of proteins can be observed quantitatively from the frequency changes (ΔF) of the QCM on the monolayer and the surface-pressure changes (Δπ) of the monolayer responding to the addition of proteins. The amount of adsorbed proteins (Δm) was also obtained from the frequency changes after lifting and drying the sample in air.Recently, QCMs have become popular tools for detection of bioactive compounds such as odorous and bitter substances, and for measurement of protein adsorption, immuno-assays, DNA hybridization, enzyme reactions, and cell growth.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3