MBE of Magnetic Metallic Structures

Author:

Prinz G. A.

Abstract

Epitaxial growth of magnetic metals actually pre-dates epitaxial growth of semiconductors. The earliest work (1936), which reported single-crystal Fe growth on NaCl, exploited the fact that single-crystal substrates of NaCl were easy to obtain, readily cleaved, and could be cleaned in a vacuum by heating. The good lattice match between the two systems and lack of interfacial disruption upon growth permitted excellent quality single-crystal films of Fe to be grown in relatively modest vacuum. Improved vacuum techniques broadened the range of materials which could be studied, with respect to both the films and substrates. The most recent ultrahigh vacuum (UHV) techniques developed for molecular beam epitaxial growth of semiconductors, including the large array of electron-based analytical tools, have also been exploited to grow and characterize magnetic metal films.Some requirements for these magnetic materials, such as the need for higher temperature effusion sources to generate useful fluxes of Fe, Co and Ni, and high vacuum in the presence of e-beam sources in order to avoid oxidation of the rare earths, served to stimulate new technical developments for the field in general. It is now possible to control growth to a fraction of a monolayer (ML) and even to know when one ML coverage is complete and another is beginning. The techniques have become so successful that a whole new subfield of magnetism has emerged — surface and interfacial magnetism — in which the work would be largely meaningless if one could not grow precisely characterized epitaxial magnetic metal films. Recent work has shown that it is now possible to grow single-crystal magnetic metal films on a wide variety of substrates, including insulators (oxides and salts), semiconductors, and metals.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3