Total-Reflection X-Ray Fluorescence Spectroscopy for In Situ, Real-Time Analysis of Growing Films

Author:

Roberts T.A.,Gray K.E.

Abstract

For many thin-film applications it is useful or necessary to accurately monitor and control the film's physical properties. Particularly important are composition and structure, which determine most of the material's properties. Examples include the semiconducting properties of SixGe1−x, the ferroelectric properties of BaTiO, and the superconducting properties of Bi2Sr2CaCu2Oy, all of which depend strongly on composition. The development of in situ analyses not only provides the possibility of feedback control during deposition, but also assists in a more efficient evaluation of the best processing conditions to achieve particular properties. Control of the film structure and composition during film growth has not been easy, and in situ analyses during film nucleation and growth has been a goal of many investigators.Our interest in in situ monitoring of film deposition was motivated by sputter growth of Bi2Sr2CaCu2Oy from a composite target. These studies found that the film composition was a strong function of deposition parameters, particularly the substrate temperature. Investigating these complex relationships required the growth and ex situ analysis of many films. It was clear that a technique to determine the composition of films during growth could efficiently unravel the complex relationships between composition and processing parameters.An important consideration for an in situ analysis technique is that it not interfere with the growth process either by altering the film surface or by changing the deposition dynamics. During deposition, the substrate temperature, gas flow, and deposition rate all must be maintained; any interruptions for the analysis may alter the growth irreversibly.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3