Long Fatigue Cracks — Microstructural Effects and Crack Closure

Author:

Liaw P.K.

Abstract

Fracture mechanics technology is an effective tool for characterizing the rates of fatigue crack propagation. Generally, fatigue crack growth rate (da/dN) in each loading cycle can be presented as a function of stress intensity range (ΔK), where ΔK = KmaxKmin, Kmax and Kmin are the maximum and the minimum stress intensities, respectively. A typical fatigue crack growth rate curve of da/dN versus ΔK can be divided into three regimes, i.e., Stage I (near-threshold), Stage II (Paris), and Stage III (fast) crack growth regions, as shown in Figure 1.Depending on the region of crack growth, fatigue crack growth behavior can be sensitive to microstructure, environment, and loading conditions [e.g., R (load) ratio = Kmin / Kmax]. In the nearthreshold region, fatigue crack growth rates are very slow, ranging from approximately 10−10 to 10−8 m/cycle. In this region, the fatigue crack growth rate curve eventually reaches a threshold stress intensity range, ΔKth, below which the crack would not grow or grow at an extremely slow rate. Typically, the value of ΔKth is operationally defined as the stress intensity range which gives a corresponding crack growth rate of 10−10 m/cycle. In the nearthreshold region, the influence of microstructure, environment, and load ratio on the rates of crack propagation is very significant.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crack Propagation in the Threshold Stress Intensity Region a Short Review;Structural Integrity;2019

2. Small Fatigue Crack Behavior in 7075-T651 Aluminum as Monitored with Rayleigh Wave Reflection;Metallurgical and Materials Transactions A;1993-08

3. MODELING THE LONG-LIFE FATIGUE BEHAVIOR OF A CAST ALUMINUM ALLOY;Fatigue & Fracture of Engineering Materials and Structures;1993-06

4. A CRACK CLOSURE MODEL FOR PREDICTING THE THRESHOLD STRESSES OF NOTCHES;Fatigue & Fracture of Engineering Materials and Structures;1993-01

5. ROUGHNESS-INDUCED FATIGUE CRACK CLOSURE: A NUMERICAL STUDY;Fatigue & Fracture of Engineering Materials and Structures;1992-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3