Diamond Films: Recent Developments in Theory and Practice

Author:

Stoneham A.M.,Ford I.J.,Chalker P.R.

Abstract

The diamond films of the early 1980s presented two quite different challenges. First how could this new form of diamond be exploited technically? Second, how could this clearly nonequilibrium generation of diamond be understood and the understanding be used to maximum effect? We shall be discussing the ideas of theory and modeling, and we will show how they have contributed to the interplay of science and technology.The science of diamond films is the art of beating nature in the use of carbon. Theory gives the understanding to improve this art. One way in which we improve on nature is in new geometries: controlled growth over selected surfaces o surface regions. The coverage, defect density, microstructure, and rate of growth are key issues. Another way to beat nature is controlled doping. Could wmake n-type semiconductors or lasers using diamond films? A third direction might be routes to control interfaces. Grai boundaries and the regions between small, misaligned crystals affect thermal properties and electron emission. Difficulties with electrical contacts may limit the use of diamond films as semiconductors or insulators. Substrate-film adhesion can determine tribological performance.If theory is to play a role in controlling film deposition, we need to understand the role of theory itself. Theory can add value at several distinct levels. At the highest level, modeling has the potential to provide a substitute for experiment, especially when information is needed about behavior at extreme conditions. When the phenomena are very fast or very complex, theory can be used to interpret limited experiments. At a more modest level, even simple quantitative models can illustrate the many processes occurring during film growth. Atomistic theories of this type can identify the rate-determining steps and point to ways of influencing them. Mesoscopic theories, especially combined with macroscopic approaches like elasticity theory, can identify routes to improved performance.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3