Chain-End Defects in Extended-Chain Polymer Solids

Author:

Martin David C.,Wilson Patricia M.,Liao Jun,Jones Marie-Christine G.

Abstract

Understanding the influence of local variations in symmetry (“defects”) on the macroscopic properties of polymers in the condensed state is an ongoing experimental and theoretical challenge. Studies of defects in solids require the most information-intensive description of microstructure since it is not possible to describe a “defect” without understanding the morphology of the majority phase as well.The nature of defects in polymers has been discussed elsewhere, including other articles in this issue of the MRS Bulletin. The structure, properties, and mobility of defects in polymers are all profoundly influenced by the covalently bonded chain backbone. In polymers, there are unique defects such as chain folds and twists that have no obvious analogue in materials of small molar mass. Here, we examine a particular type of defect that is present in all polymer systems with finite molecular weight: chain ends. Our interest will focus on chain ends in polymers that are essentially fully extended parallel to a certain preferred orientation axis.The extended-chain microstructure was originally envisioned by Staudinger as a “continuous crystal” in which high-molecular-weight polymers would be perfectly oriented and close-packed together laterally. Extended-chain polymer fibers such as poly(paraphenylene terephthalamide) (PPTA or Kevlar®), gelspun polyethylene (Spectra®), and the rigid-rod polymers poly(paraphenylene benzobisthiazole) (PBZT) and poly(paraphenylene benzobisoxazole (PBZO or PBO) (Structure 1) closely approach this conceptual limit. The outstanding tensile moduli (100–400 GPa) and tensile strengths (2–4 GPa or higher) of these fibers have generated considerable interest for lightweight structural applications. Extendedchain polymers can also be prepared by solid-state polymerizations of appropriate monomer precursors. Perhaps the most familiar of this latter class of materials are the polydi-acetylenes, first developed by Wegner.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3