Powder Processing of Functionally Gradient Materials

Author:

Watanabe R.

Abstract

Powder metallurgical (P/M) processing of FGMs provides a wide range of compositional and microstructural control, along with shape-forming capability. Oxide/metal systems are desirable because this materials combination can be used to easily tailor materials properties. However, there are many problems to be investigated which pertain to each of the processing steps; process innovations will often be required to realize the versatility of this route. In this article, I briefly review the present status of the powder-processing method.Powder metallurgical fabrication of FGMs involves the following sequential steps with a selected material combination of metals and ceramics: determination of the optimum composition profile for an effective thermal-stress reduction; stepwise or continuous stacking of powder premixes according to the predesigned composition profile; compaction of the stacked powder heap and sintering with or without pressurizing. Besides the conventional powder metallurgical routes, a spray deposition method, using mixed powder suspensions and a slurry stacking method, have been developed to form continuously graded stacking. A powder spray stacking apparatus has been devised, which is fully automatic with computer control. Deposited compacts were cold isostatically pressed (CIP) and consolidated by hot isostatic pressing. Their microstructures show that this process provides fine compositional control with desired profiles.Differential temperature sintering by laser-beam heating has been studied to add versatility to the P/M process. The surface of the green compacts is scanned with a laser beam using a predesigned scanning pattern to ensure homogeneous heating over the entire surface.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3