Abstract
The development of a new nickel based superalloy for use in the high-pressure turbine disk of a modern gas turbine is one of the most expensive and protracted exercises undertaken by gasturbine manufacturers. A typical complete development cycle can take more than 10 years. This delay arises not only because of the extensive mechanical testing and Validation required to ensure the safety of the critical part, but also because of the difficulty of finding a material chemistry that provides the correct degree of balance between mechanical properties and long-term material stability. The conventional approach to this latter problem is to use a combination of experience, empirical wisdom, and a few basic calculation tools based on electron-valency theory (PHACOMP). There is thus an urgent need to develop a tool that reliably summarizes the known body of knowledge about the stability of Ni-based superalloys and provides a method that can quickly and reliably guide the alloy developer through the initial alloy-chemistry selection phase of development.Calculation of phase equilibria using calculated phase-diagram (CALPHAD) techniques has now matured to the point where it is possible for the alloy developer to quickly and reliably calculate phase equilibrium in a matter of minutes without an in-depth knowledge of thermodynamics. There thus exists a tool that enables the definition of alloy chemistries so that specific assumptions can be tested and the final chemistry selected without having to carry out the traditional manufacturing, processing, testing, and examination of a large raft of experimental chemistries. This article aims to show how such a tool has been used and high lights the success of this approach in the field of Ni-based superalloy development.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献