Investigations of Metal Gate Electrodes on HfO2 Gate Dielectrics

Author:

Schaeffer Jamie,Samavedam Sri,Fonseca Leonardo,Capasso Cristiano,Adetutu Olubunmi,Gilmer David,Hobbs Chris,Luckowski Eric,Gregory Rich,Jiang Zhi-Xiong,Liang Yong,Moore Karen,Roan Darrell,Nguyen Bich-Yen,Tobin Phil,White Bruce

Abstract

ABSTRACTAs traditional poly-silicon gated MOSFET devices scale, the additional series capacitance due to poly-silicon depletion becomes an increasingly large fraction of the total gate capacitance, excessive boron penetration causes threshold voltage shifts, and the gate resistance is elevated. To solve these problems and continue aggressive device scaling we are studying metal electrodes with suitable work-functions and sufficient physical and electrical stability. Our studies of metal gates on HfO2 indicate that excessive inter-diffusion, inadequate phase stability, and interfacial reactions are mechanisms of failure at source drain activation temperatures that must be considered during the electrode selection process. Understanding the physical properties of the metal gate – HfO2 interface is critical to understanding the electrical behavior of MOS devices. Of particular interest is Fermi level pinning, a phenomenon that occurs at metal – dielectric interfaces which causes undesirable shifts in the effective metal work function. The magnitude of Fermi level pinning on HfO2 electrodes is studied with Pt and LaB6 electrodes. In addition, the intrinsic and extrinsic contributions to Fermi level pinning of platinum electrodes on HfO2 gate dielectrics are investigated by examining the impact of oxygen and forming gas anneals on the work function of platinum-HfO2-silicon capacitors. The presence of interfacial oxygen vacancies or Pt-Hf bonds is believed to be responsible for a degree of pinning that is stronger than predicted from the MIGS model alone. Interface chemistry and defects influence the effective metal work function.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference39 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3