Sonochemically Produced Hemoglobin Microbubbles

Author:

Wong Mike,Suslick Kenneth S.

Abstract

AbstractUsing high-intensity ultrasound, we have developed a method for the synthesis of airfilled hemoglobin (Hb) microbubbles (≈2.5 μm in diameter). Transmission electron, scanning electron, and optical microscopy show spherical particles with a shell thickness of approximately 35 nm, or roughly six protein molecules thick. The mechanism of microbubbles formation has been determined to involve both the dispersion of gas into micron-sized bubbles and the chemical cross-linking of cysteine residues between protein molecules. The primary oxidizing agent is superoxide (HO2), which is sonochemically produced from oxygen and water during acoustic cavitation. The Hb microbubbles possess many of the desired characteristics of a blood substitute. The microbubbles are smaller than red blood cells and will not block capillaries. The microbubbles are air-filled and provide a large O2 carrying capacity. The hemoglobins of the microbubbles retain their ability to bind oxygen reversibly. In addition, the oxygen affinities are similar to those of native Hb. Even more surprisingly, microbubbles show extensive cooperativity, as indicated by Hill coefficients as high as 18, which means that in the microbubble shell, there is communication between several of the crosslinked Hb tetramers upon binding oxygen. The Hb microbubbles show minimal degradation (>25%) after storage for six months at 4 °C.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3